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Abstract
Collective plasmonic modes in two- and three-dimensional periodic assemblies of metallic
nanoshells are studied by means of full electrodynamic calculations using the
layer-multiple-scattering method. We consider structures made of a single type of nanoshell as
well as binary heterostructures made of two different types of nanoshells. The complex
photonic band structure of such three-dimensional photonic crystals is analyzed in conjunction
with relevant transmission diagrams of corresponding finite slabs and the physical origin of the
different optical modes is elucidated. Moreover, we discuss associated absorption spectra and
provide a consistent interpretation of the underlying physics. In the case of the binary systems,
the plasmonic modes of the two building components coexist, leading to a rich structure of
resonances over an extended frequency range and to broadband absorption.

1. Introduction

Metallic nanoshells, particles with a dielectric core of diameter
several tens of nanometers, covered with a metallic layer
of few nanometers thickness, are being studied extensively
in the recent years. This interest is motivated to a
large extent by the tunability of plasmon resonances that
these nanoparticles exhibit. Several methods have been
developed for the fabrication of single nanoshells [1–4],
as well as of periodic structures of such [5, 6]. Since
these nanoparticles have a metallic component, they exhibit
properties that stem from the excitation of surface plasmons,
like large enhancement of the local field and strong light
absorption. The combination of these properties with
the tunability of resonances makes nanoshells promising
candidates for a large variety of applications, such as surface
enhanced Raman scattering [1, 7, 8], photonic band gap
materials [9–11], waveguides [12], nanoantennas [13], solar
spectrum harvesting [14], enhanced random lasing [15],
medical applications [16], etc.

In this work, we report a theoretical study of the optical
response of periodic structures of nanoshells using the on-shell
layer-multiple-scattering method [17–19], which is ideally
suited for photonic systems with absorptive and/or strongly
dispersive constituents such as metallic materials. The method
is effective when the structure under consideration consists of
non-overlapping particles (scatterers) in a homogeneous host

medium. The scattering properties of the individual particles
enter only through the corresponding T matrix. For core–
shell spheres, the scattering T matrix has an explicit analytic
form [20]; however, here we evaluate it using a recursive
formula for multiply coated spheres [21, 22]. In addition to
the complex frequency band structure of a three-dimensional
(3D) photonic crystal, associated with a given crystallographic
plane, the layer-multiple-scattering method allows one to
calculate, also, the transmission, reflection, and absorption
coefficients of an electromagnetic (EM) wave incident at a
given angle on a finite slab of the crystal and, therefore, it can
describe an actual transmission experiment.

Throughout this paper, the optical response of the metallic
material will be described by the simple Drude relative
dielectric function [20]

εm(ω) = 1 − ω2
p

ω(ω + iτ−1)
, (1)

where ωp is the bulk plasma frequency and τ the relaxation
time of the conduction-band electrons, and μm = 1. For
convenience, we shall express the frequency in units of ωp and
use c/ωp as the length unit. We note that, considering a typical
value 10 eV for h̄ωp, c/ωp corresponds to about 20 nm.

The present paper is organized as follows. In section 2 we
discuss aspects of the plasmon resonances in single metallic
nanoshells, the emphasis being placed on the influence of
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non-local effects. Section 3 deals with a two-dimensional
(2D) periodic array of such nanoshells and, in particular, it
examines the resonant excitation of collective plasmon modes
by analyzing corresponding transmission and absorption
spectra. In section 4 we report on the optical properties
of a 3D photonic crystal of metallic nanoshells. More
specifically, complementing previous theoretical work on the
subject [11], we present a thorough group-theory analysis
of the complex frequency band structure, in conjunction
with relevant transmission diagrams of corresponding finite
crystal slabs, and reveal the importance of the interacting
plasmon modes. Section 5 is devoted to the study of binary
heterostructures made of two different types of nanoshells.
In particular, we describe how the plasmon modes of the
building components lead to a rich structure of resonances over
an extended frequency range and to a broadband absorption
spectrum. Our results are summarized in section 6.

2. A single metallic nanoshell

The spectra of plasmon modes in metallic nanoshells are
much richer than those in solid metallic nanoparticles, since
particle plasmons (at the outer surface of the shell) and cavity
plasmons (at the inner surface of the shell), both of electric
2�-pole type, can be concurrently excited. Moreover, the
optical response of such nanoshells can be easily tuned by
engineering their geometry. Plasmons of the outer and inner
surfaces of the shell interact with each other and give rise to
coupled modes, one below the lower (particle-like) and one
above the higher (cavity-like) modes [23, 24]. The interaction
and the resulting level shifts increase as the overlap between
the corresponding wave fields becomes larger, i.e., by reducing
the shell thickness, and is more pronounced for the dipole
modes because of their relatively larger spatial extent. The
effect is demonstrated in figure 1 for the dipole modes of a
sphere of fixed radius S = c/ωp consisting of a silica core
(εsilica = 2.1, μsilica = 1) of radius S1 coated with a metallic
shell of thickness D. We have: S1 + D ≡ S = c/ωp. In
the absence of interaction between the two modes, i.e. for a
vanishingly small core radius, the dipole particle-like plasmon
mode is at 0.518ωp (the dipole-plasmon eigenfrequency of a
homogeneous metallic particle of radius S = c/ωp in air) and
the dipole cavity-like plasmon mode at 0.698ωp (the dipole-
plasmon eigenfrequency of a small silica sphere in a metal),
as expected. As D decreases, the corresponding level shifts
progressively increase.

In the case of very thin metallic shells, the electronic mean
free path is shorter than in the bulk metal. This effect can be
incorporated into the Drude dielectric function of equation (1),
assuming a larger damping constant [25]:

τ−1
S = τ−1 + 1

2

(
3

π

)1/3

vF D−1, (2)

where vF is the Fermi velocity in the bulk metal.
On the other hand, non-local effects, which are associated

with the excitation of longitudinal polarization waves in the
nanoshell and a wavevector-dependent dielectric function, may

Figure 1. A core–shell spherical particle of radius S, consisting of a
silica core of radius S1 and a metallic shell of thickness D, in air.
Variation of the location of the dipole-plasmon modes versus the
shell thickness, taking into account the non-local correction (solid
lines), if the particle radius is kept fixed at S = c/ωp. For
comparison we also show the corresponding results when non-local
corrections are neglected (dashed lines).

also be non-negligible. Within the simple, yet effective,
hydrodynamic model, the longitudinal dielectric function has
the form:

εL (q, ω) = 1 − ω2
p

ω2 − 3
5v2

Fq2 + iωτ−1
, (3)

while the transverse dielectric function retains the simple
local form of equation (1) [26]. The dispersion relation
for the longitudinal plasma waves results from the condition
εL(qL, ω) = 0 implied by Maxwell’s equations. Therefore, the
expansion of the EM field into vector spherical waves within
the nanoshell contains, in addition, longitudinal terms of the
form ∇[Y�m(r̂) j�(qLr)] and ∇[Y�m(r̂)h+

� (qLr)], where Y�m are
the usual spherical harmonics, and j�, h+

� the spherical Bessel
and Hankel functions, respectively. Imposing the boundary
conditions of continuity of the tangential components of the
electric and magnetic fields, as well as continuity of the radial
component of the electric field at the (inner and outer) surfaces
of the nanoshell, we obtain a system of linear equations for
the field amplitudes that gives the scattering T matrix. The
procedure is analogous to that in the corresponding case of
a homogeneous metallic sphere [27]; however, in the present
case, this procedure leads to relatively lengthy equations that
we shall not write down explicitly here.

As shown by solid lines in figure 1, the non-local
effects induce a blue shift of the dipole cavity-like plasmon
resonances, in agreement with quasistatic calculations [28],
while the corresponding particle-like resonances remain
practically unchanged. This can be understood as follows. In
the frequency region below ωp, the longitudinal polarization
field penetrates the nanoshell only in the form of evanescent
waves, with an attenuation length which is inversely
proportional to ImqL and decreases as we move to lower
frequencies. This evanescent field does however modify the
internal field, thus causing a small shift of the resonance
frequencies. In the low-frequency region of the dipole particle-
like plasmon resonances, the penetration of the longitudinal
field is obviously very small compared to the spatial extent of
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these resonance modes and the interaction effect is negligibly
small. On the contrary, the corresponding cavity-like modes
have an appreciable overlap with the longitudinal wave field,
since the latter has a larger penetration depth at higher
frequencies. On the other hand, as the thickness of the
nanoshell increases (large D) the localization of the cavity-
like modes about the inner surface of the nanoshell becomes
stronger, and therefore the interaction of these modes with the
longitudinal field is more pronounced.

3. Two-dimensional periodic arrays

We consider a square array in the xy plane, with lattice constant
a0 = 3c/ωp, of the above core–shell particles with S1 =
0.7c/ωp and D = 0.3c/ωp, in air and neglect losses for
now. The (2� + 1) degeneracy of the resonant modes of the
single metallic nanoshell is lifted because of the interaction
with the other nanoshells of the plane. For k‖ = 0 (k‖
is the xy component of the wavevector, q‖, reduced within
the 2D surface Brillouin zone (SBZ)), the states of the EM
field have the symmetry of the irreducible representations of
the D4h group: X1, X2, X3, X4, X5, X1′ , X2′ , X3′ , X4′ and
X5′ [29]. In agreement with a group-theory analysis, a dipole
electric mode gives a X4′ and a X5′ mode, a quadrupole electric
mode gives a X1, a X2, a X3 and a X5 mode, etc. Using the
projection operator, we find that a plane EM wave propagating
in the host region normal to the plane of nanoshells (q‖ = 0)

gives non-zero projection only to the representations of
symmetry X5 and X5′ , and therefore only modes of the plane
of nanoshells with the same symmetry can be excited by an
externally incident wave. The modes of different symmetry
are inactive; they are bound states of the system and decay
exponentially to zero away from the plane of nanoshells on
either side of it. These inactive modes correspond to poles
of the scattering S matrix [30] on the real frequency axis.
Correspondingly, the optically active modes, of X5 and X5′

symmetry, correspond to poles of the S matrix in the lower
complex frequency half-plane, with the imaginary part of the
pole determining the inverse lifetime of the respective resonant
mode. For example, the dipole particle-like plasmon mode
of the single nanoshell gives a bound state of X4′ symmetry
at 0.416ωp, and a X5′ resonant state at ω1 = 0.361ωp with
an inverse lifetime γ1 = 0.040ωp. On the other hand, the
quadrupole particle-like plasmon mode of the nanoshell gives
three bound states at 0.457ωp (X2), 0.473ωp (X1), 0.476ωp

(X3), and a X5 resonant mode at ω2 = 0.460ωp with an inverse
lifetime γ2 = 8.3 × 10−4ωp. Similarly, the dipole cavity-like
plasmon mode of the single nanoshell gives a X4′ bound state
at 0.863ωp, and a X5′ resonant state at ω1 = 0.844ωp with
an inverse lifetime γ 1 = 0.042ωp. On the other hand, the
quadrupole cavity-like plasmon mode of the nanoshell gives
three bound states at 0.787ωp (X3), 0.783ωp (X1), 0.767ωp

(X2), and a X5 resonant mode at ω2 = 0.769ωp with an
inverse lifetime γ 2 = 2.9 × 10−3ωp. With increasing �,
the eigenfrequencies of the particle- and cavity-like plasmon
modes approach each other and give rise to a dense, almost
continuous spectrum of eigenmodes.

Figure 2. A square array, with lattice constant a0 = 3c/ωp, of
nanospheres, consisting of a silica core (radius S1 = 0.7c/ωp) and a
metallic shell (thickness D = 0.3c/ωp), in air. Upper panel:
transmittance at normal incidence if absorption is neglected.
A detailed view of the first two resonances is shown in the margin,
together with a fit using equation (4) (dashed line). Lower panel:
transmittance and absorbance at normal incidence if absorption in the
metallic material is taken into account (τ−1 = 0.025ωp).

In the upper panel of figure 2 we show the transmittance
of the plane of non-absorbing nanoshells at normal incidence.
It can be seen that the transmission spectrum is characterized
by resonant structures of various types (Fano-like resonances)
which originate from the corresponding resonant modes. If in
a narrow region of frequency there is a number i = 1, 2, . . .

of resonant states that correspond to poles of the S matrix
at ωi − iγi in the lower complex frequency half-plane, the
transmittance has the form [31, 32]:

T ≈ cos2 (±δ1 ± δ2 ± . . . − φ) , (4)

where sin δi = γi [(ω − ωi)
2 + γ 2

i ]−1/2, cos δi = −(ω −
ωi )[(ω − ωi )

2 + γ 2
i ]−1/2, and φ is an almost constant phase

which contains the contributions of the non-resonant parts
of the phase shifts. For example, up to 0.5ωp, where
there are, as mentioned above, two plasmon resonance states:
ω1 = 0.361ωp, γ1 = 0.040ωp and ω2 = 0.460ωp, γ2 =
8.3 × 10−4ωp, the calculated transmittance is very accurately
reproduced by the function T = cos2(δ1 − δ2 − φ), with φ =
178.4◦, as shown in the margin of the upper panel of figure 2.
In general, the plasmon modes of the individual particles, in
a 2D periodic arrangement, interact weakly between them and
form relatively narrow bands, ω(k‖), of resonant modes about
the corresponding eigenfrequencies of the single particle.

In the lower panel of figure 2 we show the transmittance
and absorbance of the plane of nanoshells at normal incidence,
taking into account dissipative losses in the metallic material
(τ−1 = 0.025ωp). We can see that the sharp features in
the transmission spectrum, which originate from the resonant
states with long lifetimes, are washed out by absorption, and
essentially only the dipole and quadrupole plasmon modes
manifest themselves in the transmittance. Correspondingly, the
absorption spectrum is characterized by resonance peaks in the
frequency regions of the above plasmon modes.
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Figure 3. Left-hand panel: the photonic band structure of a fcc
crystal, with lattice constant a = 3

√
2c/ωp, of non-absorbing

nanospheres consisting of a silica core (radius S1 = 0.7c/ωp) and a
metallic shell (thickness D = 0.3c/ωp), in air, along the [001]
direction. The thick and thin lines denote the doubly degenerate and
non-degenerate bands, respectively, and the dashed lines show the
results of the effective-medium approximation. Right-hand panel:
transmittance at normal incidence of a slab of NL = 8 (001) planes
of the above crystal.

4. Three-dimensional crystals

We now consider a fcc crystal, built of a sequence of (001)

planes of the above nanoshells. The crystal has a lattice
constant a = √

2a0 = 3
√

2c/ωp and the distance between
successive (001) planes is d = a/2. We deliberately disregard
absorption in the metallic material in order to be able to
calculate the frequency band structure in an unambiguous
manner. The left-hand panel of figure 3 shows the photonic
band structure normal to the (001) surface. The symmetry of
the bands along this direction (
1, 
2, 
1′ , 
2′ , 
5) is that
of the C4v group [29]. The bands 
1, 
2, 
1′ , 
2′ are non-
degenerate and 
5 are doubly degenerate. We note that the
(001) surface of the crystal under consideration is a plane of
mirror symmetry and therefore the frequency bands appear in
pairs: kz(ω, k‖) and −kz(ω, k‖); for this reason, in this figure
we show the bands only for positive kz .

At low frequencies we obtain a linear dispersion curve, of

5 symmetry, as expected for propagation in a homogeneous
medium characterized by a frequency-independent effective
refractive index. At higher frequencies the band structure
is dominated by flat, almost dispersionless bands which
originate from the surface-plasmon modes of the nanoshells.
With increasing �, these resonance bands associated with
the particle- and cavity-like plasmon modes of the individual
nanoshells approach each other and give rise to a dense, almost
continuous distribution of eigenmodes. The 
5 component of
the resonance bands hybridizes with the extended 
5 band
that would be in the effective medium to produce the 
5

bands in the photonic crystal shown in the left-hand panel of
figure 3. It can be seen that frequency gaps open up due to
hybridization between the extended band and flat bands with
the same symmetry. The hybridization is stronger for the
dipole resonance bands, because of the larger spatial extent of
the associated wavefunctions, and the corresponding gaps are
wider and well reproduced assuming a homogeneous effective

medium characterized by μeff = 1 and

εeff = (q S)3 − 3i f TE1 (ω)

(q S)3 + 3
2 i f TE1 (ω)

, (5)

where f is the volume fraction occupied by the particles and
TE1 is the electric dipole element of the T matrix [33], as
shown by the dashed lines in the left-hand panel of figure 3.
Interestingly, in the long-wavelength limit, equation (5) is
equivalent to a two-step Maxwell-Garnett approximation,
where an effective dielectric function εs is first obtained by
homogenization of the individual coated particles:

εs − εm

εs + 2εm
=

(
S1

S

)3
εsilica − εm

εsilica + 2εm
, (6)

and then εs is used to calculate εeff:

εeff − 1

εeff + 2
= f

εs − 1

εs + 2
. (7)

The fine structure of the actual band diagram can be described
by more elaborated effective-medium theories [11].

In the right-hand panel of figure 3 we show the
transmittance of a slab of the crystal consisting of NL =
8 (001) planes of nanoshells. The transmittance opposite
the extended band exhibits the well-known Fabry–Perot
oscillations due to multiple scattering between the surfaces
of the slab. The period of these oscillations corresponds to
kzd/π = 1/8, as expected for the given slab thickness (see
open circles in the left-hand diagram of figure 3). In the gap
regions, and also within regions of frequency where only non-
degenerate bands exist, the transmission coefficient practically
vanishes.

The non-degenerate bands along the [001] direction
arise from an apparently weak interaction between the
corresponding bound states of the EM field, localized about
consecutive (001) planes of scatterers. In order to demonstrate
the above, we looked for the eigenmodes of the EM field,
for k‖ = 0, in a slab of NL = 8 planes of nanoshells.
Over the frequency range of each of these bands we obtain
eight eigenfrequencies which, plotted against values of the
reduced wavenumber kz = κπ/(NL + 1)d , κ = 1, 2, . . . , NL,
(NL = 8), reproduce the corresponding dispersion curves of
the infinite crystal, as shown by the open circles in the left-
hand panel of figure 4 for the lowest non-degenerate band.
As discussed in section 3, the non-degenerate bands along the
[001] direction of the crystal cannot be excited by an externally
incident wave because they do not have the proper symmetry.
However these bands survive for k‖ 	= 0 (at least in the
neighborhood of k‖ = 0) where they couple with an incident
wave of the same k‖ leading to measurable transmittance.

We note that the total number of bands shown in the left-
hand panel of figure 3 equals the number expected from the
degeneracy of the resonances of the individual nanoshells with
a ‘would be’ extended effective-medium band. For example,
as can be seen in the left-hand panel of figure 4, the dipole
particle- and cavity-like plasmon modes of the individual
nanoshells give a threefold degenerate state (of �15 symmetry)
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Figure 4. A detailed view of figure 3, in the frequency region of the
dipole and quadrupole particle- and cavity-like plasmon modes. In
the band structure diagram, apart from the ordinary frequency bands
(kz is real), we also show the real frequency lines for complex
eigenvalues kz which correspond to the doubly degenerate bands
(the imaginary part of kz is plotted in the gray-shaded areas).
The corresponding transmission diagram is presented in
logarithmic scale.

at k = 0 which is separated into a 
1 and a 
5 band along
the [001] direction. The corresponding quadrupole modes give
a threefold degenerate (�25′) state and a doubly degenerate
(�12) state at k = 0 which are separated into a 
2′ and
a 
5 band, and into a 
1 and a 
2 band along the [001]
direction, respectively. Frequency gaps open up as a result
of hybridization between the extended effective-medium band
and the above 
5 resonance bands.

In the left-hand panel of figure 4, apart from the ordinary
frequency bands (kz is real), we also show the real frequency
lines for complex eigenvalues kz that correspond to the doubly
degenerate bands. These lines are the analytic continuations
in the complex kz plane of the bands below and above the
gaps [31]. The real frequency line of the appropriate symmetry
(
5 in the present case) with the smallest imaginary part over a
frequency gap determines the attenuation of the wave field over
this region; we obtain ln T (ω) = −2d NLIm[kz(ω)] + const.,
for a given value of k‖. This is indeed observed in the right-
hand panel of figure 4, where we show the transmittance for a
wave incident normally on a slab of the crystal consisting of
NL = 8 (001) planes. It can be seen that, in the region of
the first gap, the real frequency line denoted by ‘1’ determines
the transmittance below 0.368ωp and that denoted by ‘2’
determines the transmittance above 0.368ωp. Similarly, in the
gap extending from 0.808ωp to 0.875ωp, the real frequency line
denoted by ‘1’ determines the transmittance below 0.843ωp

and that denoted by ‘2’ determines the transmittance above
0.843ωp.

The resonance structures in the transmittance of the slab in
the frequency region from 0.449ωp to 0.469ωp and 0.758ωp to
0.781ωp are clearly due to particle resonances localized about
the individual layers interacting very weakly between them. It
is worth noting the fact that the resonances of the slab appear
at frequencies along the real frequency line corresponding to
Re[kz]d/π = κ/(NL +1), κ = 1, 2, . . . , NL, where NL = 8 is
the number of layers in the slab, as shown by the open circles

Figure 5. Projection of the photonic band structure of a fcc crystal,
with lattice constant a = 3

√
2c/ωp, of non-absorbing nanospheres

consisting of a silica core (radius S1 = 0.7c/ωp) and a metallic shell
(thickness D = 0.3c/ωp), in air, on the SBZ of the fcc (001) surface,
along the symmetry lines shown in the inset.

in the lower diagram of the left-hand panel of figure 4. Which
implies (and we have verified this numerically) that the number
of transmission resonances increases with the thickness NL of
the slab.

In figure 5 we present the projection of the frequency
band structure of the EM field of the photonic crystal under
consideration on the symmetry lines of the SBZ of the fcc
(001) surface. The shaded regions extend over the frequency
bands of the EM field: at any one frequency within a shaded
region, for given k‖, there exists at least one propagating
EM mode in the infinite crystal. The blank regions represent
frequency gaps for the given k‖. Obviously an absolute gap
exists only when a blank region of frequency is common to
all k‖ in the SBZ. We note that knowing the modes with k‖
in the shaded area (�XM) of the SBZ shown in the inset of
figure 5 and 0 � kz � π/d is sufficient for a complete
description of all the modes in the infinite crystal. The modes
in the remaining of the reduced k space are obtained through
symmetry. One clearly sees that for the given crystal one does
not obtain an omnidirectional frequency gap. This, according
to our calculations, is also the case for corresponding crystals
with different lattice constants.

5. Binary heterostructures

Since the eigenfrequencies of the plasmonic resonances of
single metallic nanoshells vary drastically with D, it is
interesting to investigate the optical response of complex
structures, consisting for example of two types of metallic
nanoshells of different thickness. In this case, one expects
the coexistence of plasmonic resonances of both types of
nanoshells in different regions of frequency. Based on the
structure examined in section 4, we consider as unit a pair
of consecutive (001) planes of the given fcc lattice, with the
sites of the first plane occupied by silica core/metallic shell
particles with S1 = 0.7c/ωp and D = 0.3c/ωp (A), and the
sites of the second plane occupied by silica core/metallic shell
particles with S1 = 0.9c/ωp and D = 0.1c/ωp (B). Repeating
periodically this pair of planes, we build a binary structure AB

5
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Figure 6. The unit cell of a tetragonal crystal AB of two different
silica core/metallic shell particles: A (S = c/ωp, D = 0.3c/ωp) and
B (S = c/ωp, D = 0.1c/ωp), together with the corresponding unit
cells of fcc structures of the constituent components A and B.

Figure 7. Transmittance (solid lines) and absorbance (dashed lines)
at normal incidence of one (left-hand panel) and four (right-hand
panel) pairs of consecutive (001) planes of the structures shown in
figure 6. Dissipative losses in the metallic material are taken into
account considering τ−1 = 0.025c/ωp in equation (1).

which is described by a tetragonal lattice of lattice constants
a0, and

√
2a0, with the A particles at (000) and the B particles

at ( 1
2

1
2

1
2 ), as shown in figure 6.

Figure 7 depicts the transmittance and absorbance at
normal incidence for one and four pairs of such planes AB,
together with the corresponding spectra when all planes are
occupied either by nanoshells A or B, for comparison. It can be
seen that the transmittance and absorbance exhibit resonance
dips and peaks, respectively, that originate from both types
of nanoshells. Obviously, the combination of two different
nanoshells leads to strong, broadband absorbance.

Figure 8 displays the photonic band structure of the
crystals of figure 6, neglecting losses in the metallic material,
along the [001] direction, over a restricted frequency region.
We note that the band diagram for crystal A in this figure is
identical with the corresponding part of the diagram shown in
the left-hand panel of figure 3. The only difference is that now
we consider a unit cell twice as big as the fcc primitive cell,
since d = √

2a0 here (see figure 6) while d = √
2a0/2 in

section 4, and the bands are folded into the (smaller) Brillouin
zone. The same reduced-zone representation also applies for
crystal B, so that the results are directly comparable with those
for crystal AB. The narrow bands originating from the surface-
plasmon modes of the nanoshells, and the consequent gaps
that result from hybridization of these bands with the extended
effective-medium band, are shifted to lower frequencies in
crystal B, compared with crystal A, because the nanoshells
B are thinner than A. In crystal AB, the collective plasmonic

Figure 8. The photonic band structure of the crystals of figure 6,
along the [001] direction.

Figure 9. Projection of the photonic band structure of the crystals of
figure 6 on the SBZ of the (001) surface, along the symmetry lines.

modes of the two building components coexist. As can be seen
in figure 8, we obtain in this case two sizable hybridization
gaps along the [001] direction, about the eigenfrequencies of
the dipole particle-like plasmon modes of both nanoshells A
(0.366ωp) and B (0.218ωp). Interestingly, the � = 4 particle-
like plasmon modes of the B component, and the associated flat
bands, appear within the higher hybridization gap of crystal
AB. However, the corresponding projections of the photonic
band structures on the SBZ of the (001) surface, depicted in
figure 9, show that there is no omnidirectional gap in these
crystals. This finding, in conjunction with similar results
reported in the literature [11], leads to the conclusion that
photonic crystals of metallic nanoshells cannot easily exhibit
sizable omnidirectional gaps in the optical region.

6. Conclusion

In conclusion, we reported a thorough theoretical study of the
optical properties of 2D and 3D periodic structures of metallic
nanoshells using the layer-multiple-scattering method. We
find that the influence of non-local effects is appreciable only
on the cavity-like plasmon resonances of ultrathin shells or
nanoshells with a very small dielectric core. In assemblies of
metallic nanoshells, the plasmon resonances of the individual
particles interact weakly between them and form narrow
bands of collective plasmon modes that manifest themselves
as resonance structures in corresponding transmission spectra
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and induce strong absorption. Such narrow bands, in 3D
photonic crystals of metallic nanoshells, interact with the
extended effective-medium band and frequency gaps open
up as a result of this hybridization. However, these gaps
are not, in general, omnidirectional. In the case of binary
heterostructures, collective plasmonic modes originating from
the two building components, which can be easily tuned by a
proper choice of nanoshells, coexist, leading to hybridization
gaps, broadband absorption, and a rich structure of resonances
over an extended range of frequencies.
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